

Shenzhen Global Test Service Co., Ltd

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

TEST REPORT

EN 55032

Electromagnetic compatibility of multimedia equipment - Emission Requirements

EN 55035

Information technology equipment – Immunity characteristics – Limits and methods of measurement

Report Reference No......: GTS20250811007-1-02

Date of issue.....: Nov. 20, 2025

Testing Laboratory Name.....: **Shenzhen Global Test Service Co., Ltd.**

Address.....: No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

Supervised by

(Testing Engineer).....: Duke Liu

Reviewed by

(Testing Engineer).....: Olive Nie

Approved by

(Manager).....: Jason Hu

Applicant's name.....: **Shenzhen Techtion Smart Electronics Co., Ltd.**

Address.....: Room 902, 8th Floor, Unit 1, Building No. 2, Xintianxia Chengyun Factory District, Vanke City Community, Bantian Street, Longgang District, Shenzhen

Manufacturer's name.....: **Shenzhen Techtion Smart Electronics Co., Ltd.**

Address.....: Room 902, 8th Floor, Unit 1, Building No. 2, Xintianxia Chengyun Factory District, Vanke City Community, Bantian Street, Longgang District, Shenzhen

Test specification:

Standard.....: **EN 55032: 2015+A11:2020+A1: 2020**

EN 55035: 2017+A11: 2020

Receiver Date.....: Aug. 16, 2025

Test Period.....: Aug. 16, 2025 ~Sep. 20, 2025

Test item description.....: Outdoor Reflective and Transflective Display Screen

Trade Mark.....: N/A

Model/Type reference.....: TS-280PHD

Listed Models.....: N/A

Ratings.....: Input: 110-240V~, 50/60Hz, 62W

Result.....: **PASS**

Shenzhen Global Test Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	GTS20250811007-1-02	Nov. 20, 2025 Date of issue
--------------------------	---------------------	--------------------------------

Equipment under Test : Outdoor Reflective and Transflective Display Screen

Model /Type : TS-280PHD

Model List : N/A

Model different : N/A

Classification of equipment : Class A

Highest internal frequency : Above 108MHz

Applicant : **Shenzhen Techtion Smart Electronics Co., Ltd.**

Address : Room 902, 8th Floor, Unit 1, Building No. 2, Xintianxia Chengyun Factory District, Vanke City Community, Bantian Street, Longgang District, Shenzhen

Manufacturer : **Shenzhen Techtion Smart Electronics Co., Ltd.**

Address : Room 902, 8th Floor, Unit 1, Building No. 2, Xintianxia Chengyun Factory District, Vanke City Community, Bantian Street, Longgang District, Shenzhen

Test Result	Pass
--------------------	-------------

The above equipment has been tested by Shenzhen Global Test Service Co., Ltd., and found compliance with the requirements set forth in the EMC Directive 2014/30/EU technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Contents

1. TEST SUMMARY	4
2. EUT INFORMATION	5
2.1. I/O Port Description	5
2.2. EUT operation mode	5
2.3. EUT configuration	6
3. TEST ENVIRONMENT	7
3.1. Address of the test laboratory	7
3.2. Test Facility	7
3.3. Test Software	7
3.4. Statement of the measurement uncertainty	8
3.5. Test Site Environmental	9
3.6. Test Instruments	10
4. TEST CONDITIONS AND RESULTS	12
4.1. Conducted Emission	12
4.1.1 Limits	12
4.1.2 Test Configuration	12
4.1.3 Test Procedure	13
4.1.4 Test Results	14
4.2. Radiated Emission	18
4.2.1 Limit	18
4.2.2 Test Configuration	19
4.2.3 Test Procedure	21
4.2.4 Test Results	22
4.3. Electrostatic Discharge (ESD)	26
4.3.1 Test Specification	26
4.3.2 Test Configuration	26
4.3.3 Test Procedure	26
4.3.4 Test Results	27
4.4. Electrical Fast Transient/Burst (EFT)	28
4.4.1 Test Specification	28
4.4.2 Test Configuration	28
4.4.3 Test Procedure	28
4.4.4 Test Results	29
4.5. Voltage Dips and Interruptions	30
4.5.1 Test Specification	30
4.5.2 Test Configuration	30
4.5.3 Test Procedure	30
4.5.4 Test Results	31
5. TEST SETUP PHOTOS OF THE EUT	32
6. EXTERNAL PHOTOS OF THE EUT	36

1. TEST SUMMARY

Emission			
Standard	Item	Verdict	Remark
EN 55032: 2015+A11:2020+A1: 2020	Conducted Emission	PASS	Meet Class A limit
	Radiated Emission	PASS	Meet Class A limit

Immunity (EN 55035: 2017+A11: 2020)			
Standard	Item	Result	Remark
EN 61000-4-2: 2009	ESD	PASS	Meets the requirements of Criterion B
EN 61000-4-4: 2012	EFT	PASS	Meets the requirements of Criterion B
EN IEC 61000-4-11: 2020	Voltage Dips & Voltage Variations	PASS	Meets the requirements of Voltage Dips: 1) >95% reduction Criterion B 2) 30% reduction Criterion C Voltage Interruptions: >95% reduction Criterion C

The test results of this report was related only to the tested sample(s) identified in this report. Manufacturer or whom it may concern should recognize the pass or fail of the test result.

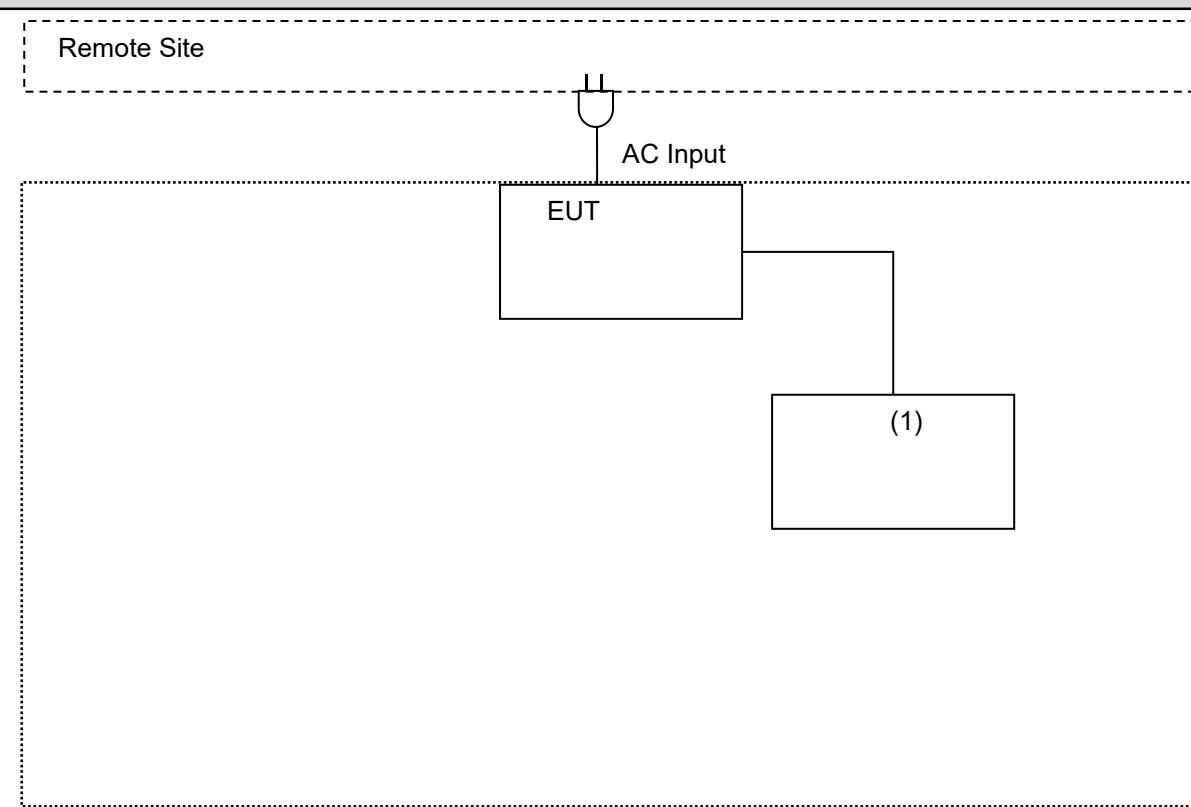
2. EUT INFORMATION

2.1. I/O Port Description

I/O Port Types	Q'TY	Test Description
1). /	/	/

Note: Internal ports are only used during installation so are not considered.

2.2. EUT operation mode


Pre-Test Mode	Mode 1: Full load operation and displaying colour bar	
Final Test Mode	Conducted Emission	Mode 1
	Radiates Emission	Below 1GHz Mode 1
		Above 1GHz Mode 1
	ESD	Mode 1
	EFT	Mode 1
	Voltage Dips & Voltage Variations	Mode 1

Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

2.3. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

Auxiliary Equipment					
Description	Manufacturer	Model Number	Otyr	Remarks	
(1) Mouse	Lenovo	/	/	Provided by the laboratory	

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co., Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

3.3. Test Software

Measurement Software			
No.	Description	Software	Version
1	Conducted Emission	JS32-RE	Ver 2.5
2	Radiated Emission _ Below 1GHz	JS32-RE	Ver 2.5.1.8
3	Radiated Emission _ Above 1GHz	JS32-RE	Ver 2.5.1.8
4	RS	EMC-RS	2.0.1.2

3.4. Statement of the measurement uncertainty

Test Item	Test Site	Frequency Range		Uncertainty (dB)
Conducted Emission AC Power Port	Conductive Shielding Room	9 kHz ~ 150 kHz		1.6
		150 kHz ~ 30 MHz		1.6
Conducted Emission Telecommunication Port		150 kHz ~ 30 MHz		2.08
Radiated Emission	966	30 MHz ~ 1000 MHz	Horizontal	3.95
			Vertical	3.95
		1000 MHz ~ 6000 MHz		4.57

Note: The Vertical and Horizontal measurement uncertainty of 1GHz to 6GHz is evaluated and choose which polarity is worst value.

Test Item	Uncertainty
Electrostatic Discharge	Voltage
	Current
	Timing
Electrical Fast Transient/Burst	2 %
Voltage Dips and Interruption	Voltage
	Timing

3.5. Test Site Environmental

Test Item	Required (IEC 60068-1)		Actual
Conducted Emission	Temperature (°C)	15-35	25.1
	Humidity (%RH)	25-75	52
	Barometric pressure (mbar)	860-1060	100.6
Radiated Emission	Temperature (°C)	15-35	24.8
	Humidity (%RH)	25-75	51
	Barometric pressure (mbar)	860-1060	100.6
ESD	Temperature (°C)	15-35	24.9
	Humidity (%RH)	30-60	50
	Barometric pressure (mbar)	860-1060	100.6
EFT	Temperature (°C)	15-35	24.9
	Humidity (%RH)	30-60	50
	Barometric pressure (mbar)	860-1060	100.6
Voltage Dips & Voltage Variations	Temperature (°C)	15-35	24.9
	Humidity (%RH)	25-75	50
	Barometric pressure (mbar)	860-1060	100.6

3.6. Test Instruments

Conducted Emission test site					
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Test Receiver	R&S	ESPI 3	101841	2025/06/26	1 year
Transient Limiter	CYBERTEK	EM5010A	E1950100106	2025/06/27	1 year
LISN	R&S	ESH2-Z5	893606/008	2025/06/27	1 year
LISN	CYBERTEK	EM5040A	E1850400105	2025/06/27	1 year
ISN	SCHWARZBECK	NTFM 8158	066	2025/06/27	1 year
ISN	SCHWARZBECK	CAT5 8158	121	2025/06/27	1 year
ISN	SCHWARZBECK	CAT3 8158	102	2025/06/27	1 year
Test Site	XINJU	Conductive Shielding Room	N/A	N.C.R.	-----

966 Chamber					
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Amplifier	SKET	LAPA 30M01G	SK20240104001	2025/01/21	1 year
Amplifier	EMCI	EMC012645SE	980340	2025/01/21	1 year
Test Receiver	R&S	ESCI 7	101102	2025/06/26	1 year
Spectrum Analyzer	R&S	FSV40-N	101800	2025/06/21	1 year
Broadband Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB 9163	00976	2025/07/15	1 year
Double Ridged Horn Antenna (1~18GHz)	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120D	01622	2024/12/16	1 year
Test Site	XINJU	966	N/A	2025/06/29	3 year

Electrostatic Discharge test site					
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
ESD Simulator	EXPERT IN EMC LIONCEL	ESD-203B	0200303	2025/06/13	1 year
0.8m Height Wooden Table	N/A	N/A	N/A	N.C.R.	-----
Test Site	EMS Lab	N/A	N/A	N.C.R.	-----

Electrical Fast Transient/Burst / Voltage Dips and Interruption test site					
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
EMC Immunity Tester	EMC-PARTNER AG	TRANSIENT 3000	TRA3000 F5-S-D-V-1527	2025/06/21	1 year
Coupling Clamp	EMC-PARTNER AG	CN-EFT1000	CN-EFT1000-1574	2025/06/21	1 year
Signal Line Coupling Network	EXPERT IN EMC LIONCEL	CDN-508SUS	200502	2025/06/21	1 year
Surge Generator	EXPERT IN EMC LIONCEL	LSG-506CT	220902	2025/06/21	1 year
Test Site	EMS Lab	N/A	N/A	N.C.R.	-----

4. TEST CONDITIONS AND RESULTS

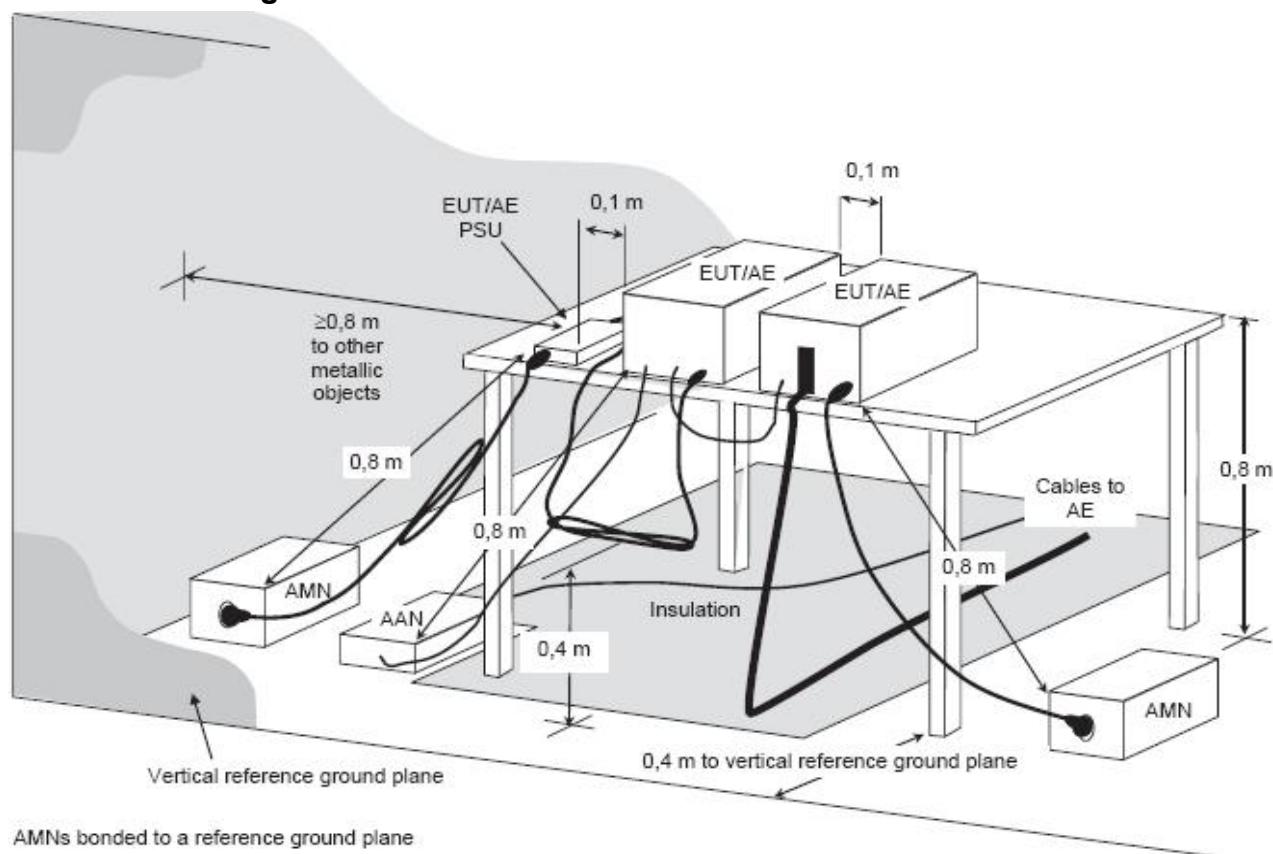
4.1. Conducted Emission

4.1.1 Limits

A.C. Mains Conducted Interference Limit

Frequency (MHz)	Class A (dBuV)		Class B (dBuV)	
	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

Note: (1) The lower limit shall apply at the transition frequencies.


(2) The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

(3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Telecommunication Port Asymmetric mode Conducted Interference Limit

Requirement (MHz)	Class A Equipment				Class B Equipment			
	Voltage Limit (dB μ V)		Current Limit (dB μ A)		Voltage Limit (dB μ V)		Current Limit (dB μ A)	
	QP	Avg.	QP	Avg.	QP	Avg.	QP	Avg.
0.15 to 0.50	97 to 87	84 to 74	53 to 43	40 to 30	84 to 74	74 to 64	40 to 30	30 to 20
0.50 to 30	87	74	43	30	74	64	30	20

4.1.2 Test Configuration

4.1.3 Test Procedure

A.C. Mains Conducted Interference

Procedure of Preliminary Test

The EUT and support equipment, if needed, were set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55032 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane, which has a less than 15 cm non-conductive covering to insulate the EUT from the ground plane.

All I/O cables were positioned to simulate typical actual usage as per EN 55032.

The EUT installed by AC main power, through a Line Impedance Stabilization Network (LISN), which was supplied power source and was grounded to the ground plane.

All support equipment power by a second LISN.

The test program of the EUT was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in Item 3.1 were scanned during the preliminary test.

After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.

The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

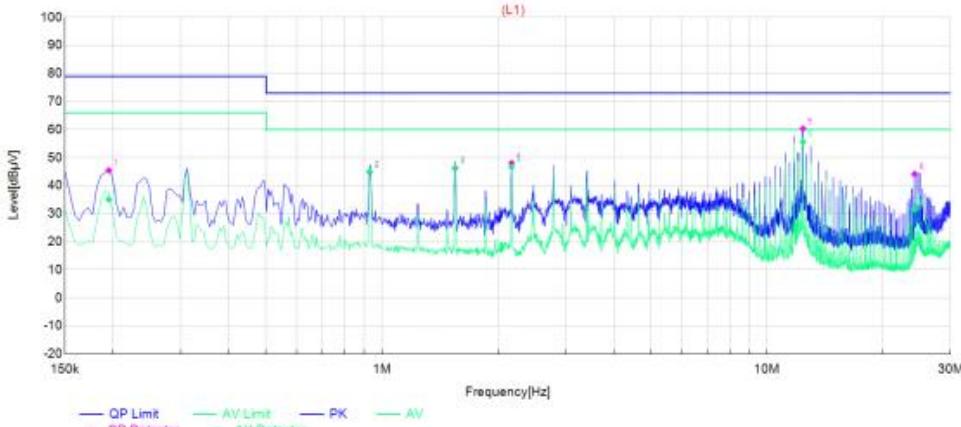
A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

Cables connecting to AE located outside the measurement area shall drop directly to, but be insulated from, the RGP shall be used thickness of the insulation and shall not be more than 150 mm. However, cables which would normally be bonded to ground should be bonded to the RGP in accordance with normal practice or the manufacturer's recommendation

Telecommunication Port Conducted Interference

Selecting ISN for unscreened cable and screened cable to make measurement and Current probe for coaxial cable.


The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.

Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

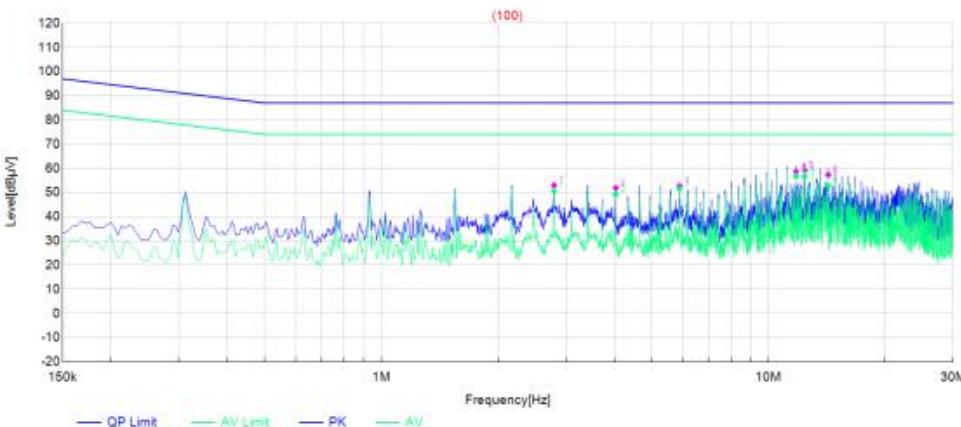
In case of measuring on the screened cable, the current limit shall be applied; otherwise the voltage limit should be applied.

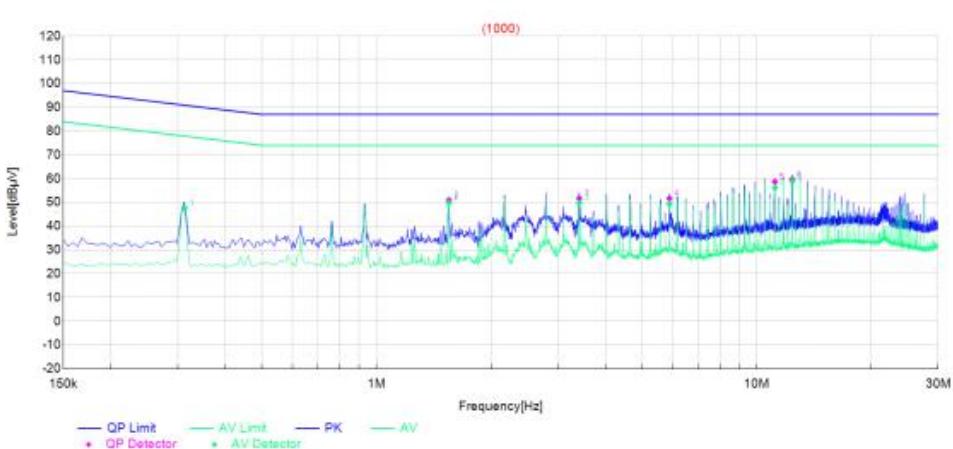
4.1.4 Test Results

Test Standard:	EN 55032	Power Line:	L1																																																																																											
Test Mode:	Mode 1	Test Power:	AC 230 V/50 Hz																																																																																											
Description:																																																																																														
Test Graph																																																																																														
Final Data List <table border="1"> <thead> <tr> <th>NO.</th> <th>Frequency</th> <th>QP Reading</th> <th>AVG. Reading</th> <th>Factor</th> <th>QP Result</th> <th>AVG. Result</th> <th>QP Limit</th> <th>AVG. Limit</th> <th>QP Margin</th> <th>AVG. Margin</th> <th>Line</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>0.195</td> <td>35.30</td> <td>24.95</td> <td>10.16</td> <td>45.46</td> <td>35.11</td> <td>79.00</td> <td>66.00</td> <td>33.54</td> <td>30.89</td> <td>L1</td> <td>PASS</td> </tr> <tr> <td>2</td> <td>0.9285</td> <td>34.62</td> <td>34.81</td> <td>10.21</td> <td>44.83</td> <td>45.02</td> <td>73.00</td> <td>60.00</td> <td>28.17</td> <td>14.98</td> <td>L1</td> <td>PASS</td> </tr> <tr> <td>3</td> <td>1.5495</td> <td>36.01</td> <td>36.20</td> <td>10.24</td> <td>46.25</td> <td>46.44</td> <td>73.00</td> <td>60.00</td> <td>26.75</td> <td>13.56</td> <td>L1</td> <td>PASS</td> </tr> <tr> <td>4</td> <td>2.1705</td> <td>37.78</td> <td>36.30</td> <td>10.28</td> <td>48.06</td> <td>46.58</td> <td>73.00</td> <td>60.00</td> <td>24.94</td> <td>13.42</td> <td>L1</td> <td>PASS</td> </tr> <tr> <td>5</td> <td>12.408</td> <td>49.49</td> <td>44.81</td> <td>10.85</td> <td>60.34</td> <td>55.66</td> <td>73.00</td> <td>60.00</td> <td>12.66</td> <td>4.34</td> <td>L1</td> <td>PASS</td> </tr> <tr> <td>6</td> <td>24.189</td> <td>32.57</td> <td>20.04</td> <td>11.57</td> <td>44.14</td> <td>31.61</td> <td>73.00</td> <td>60.00</td> <td>28.86</td> <td>28.39</td> <td>L1</td> <td>PASS</td> </tr> </tbody> </table>				NO.	Frequency	QP Reading	AVG. Reading	Factor	QP Result	AVG. Result	QP Limit	AVG. Limit	QP Margin	AVG. Margin	Line	Remark	1	0.195	35.30	24.95	10.16	45.46	35.11	79.00	66.00	33.54	30.89	L1	PASS	2	0.9285	34.62	34.81	10.21	44.83	45.02	73.00	60.00	28.17	14.98	L1	PASS	3	1.5495	36.01	36.20	10.24	46.25	46.44	73.00	60.00	26.75	13.56	L1	PASS	4	2.1705	37.78	36.30	10.28	48.06	46.58	73.00	60.00	24.94	13.42	L1	PASS	5	12.408	49.49	44.81	10.85	60.34	55.66	73.00	60.00	12.66	4.34	L1	PASS	6	24.189	32.57	20.04	11.57	44.14	31.61	73.00	60.00	28.86	28.39	L1	PASS
NO.	Frequency	QP Reading	AVG. Reading	Factor	QP Result	AVG. Result	QP Limit	AVG. Limit	QP Margin	AVG. Margin	Line	Remark																																																																																		
1	0.195	35.30	24.95	10.16	45.46	35.11	79.00	66.00	33.54	30.89	L1	PASS																																																																																		
2	0.9285	34.62	34.81	10.21	44.83	45.02	73.00	60.00	28.17	14.98	L1	PASS																																																																																		
3	1.5495	36.01	36.20	10.24	46.25	46.44	73.00	60.00	26.75	13.56	L1	PASS																																																																																		
4	2.1705	37.78	36.30	10.28	48.06	46.58	73.00	60.00	24.94	13.42	L1	PASS																																																																																		
5	12.408	49.49	44.81	10.85	60.34	55.66	73.00	60.00	12.66	4.34	L1	PASS																																																																																		
6	24.189	32.57	20.04	11.57	44.14	31.61	73.00	60.00	28.86	28.39	L1	PASS																																																																																		

Note: 1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


Test Standard:	EN 55032		Power Line:	N	
Test Mode:	Mode 1		Test Power:	AC 230 V/50 Hz	
Description:					


Test Graph

Final Data List

NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.15	41.37	30.26	10.35	51.72	40.61	79.00	66.00	27.28	25.39	N	PASS
2	0.312	39.80	39.92	10.11	49.91	50.03	79.00	66.00	29.09	15.97	N	PASS
3	0.933	41.89	41.82	10.21	52.10	52.03	73.00	60.00	20.90	7.97	N	PASS
4	1.5495	40.59	40.58	10.24	50.83	50.82	73.00	60.00	22.17	9.18	N	PASS
5	12.408	45.32	42.40	10.85	56.17	53.25	73.00	60.00	16.83	6.75	N	PASS
6	24.5085	38.66	32.18	11.53	50.19	43.71	73.00	60.00	22.81	16.29	N	PASS

Note: 1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).
2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Test Standard:	EN 55032	Line:	100M																																																																																											
Test Mode:	Mode 1	Test Power:	AC 230 V/50 Hz																																																																																											
Description:																																																																																														
Test Graph																																																																																														
Final Data List <table border="1"> <thead> <tr> <th>NO.</th> <th>Frequency</th> <th>QP Reading</th> <th>Avg. Reading</th> <th>Factor</th> <th>QP Result</th> <th>Avg. Result</th> <th>QP Limit</th> <th>Avg. Limit</th> <th>QP Margin</th> <th>Avg. Margin</th> <th>Line</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2.7915</td> <td>33.47</td> <td>31.08</td> <td>19.46</td> <td>52.93</td> <td>50.54</td> <td>87.00</td> <td>74.00</td> <td>34.07</td> <td>23.46</td> <td>100</td> <td>PASS</td> </tr> <tr> <td>2</td> <td>4.0335</td> <td>32.49</td> <td>29.89</td> <td>19.40</td> <td>51.89</td> <td>49.29</td> <td>87.00</td> <td>74.00</td> <td>35.11</td> <td>24.71</td> <td>100</td> <td>PASS</td> </tr> <tr> <td>3</td> <td>5.892</td> <td>33.26</td> <td>32.22</td> <td>19.41</td> <td>52.67</td> <td>51.63</td> <td>87.00</td> <td>74.00</td> <td>34.33</td> <td>22.37</td> <td>100</td> <td>PASS</td> </tr> <tr> <td>4</td> <td>11.787</td> <td>39.17</td> <td>37.30</td> <td>19.45</td> <td>58.62</td> <td>56.75</td> <td>87.00</td> <td>74.00</td> <td>28.38</td> <td>17.25</td> <td>100</td> <td>PASS</td> </tr> <tr> <td>5</td> <td>12.408</td> <td>39.77</td> <td>37.21</td> <td>19.46</td> <td>59.23</td> <td>56.67</td> <td>87.00</td> <td>74.00</td> <td>27.77</td> <td>17.33</td> <td>100</td> <td>PASS</td> </tr> <tr> <td>6</td> <td>14.271</td> <td>37.99</td> <td>33.47</td> <td>19.37</td> <td>57.36</td> <td>52.84</td> <td>87.00</td> <td>74.00</td> <td>29.64</td> <td>21.16</td> <td>100</td> <td>PASS</td> </tr> </tbody> </table>				NO.	Frequency	QP Reading	Avg. Reading	Factor	QP Result	Avg. Result	QP Limit	Avg. Limit	QP Margin	Avg. Margin	Line	Remark	1	2.7915	33.47	31.08	19.46	52.93	50.54	87.00	74.00	34.07	23.46	100	PASS	2	4.0335	32.49	29.89	19.40	51.89	49.29	87.00	74.00	35.11	24.71	100	PASS	3	5.892	33.26	32.22	19.41	52.67	51.63	87.00	74.00	34.33	22.37	100	PASS	4	11.787	39.17	37.30	19.45	58.62	56.75	87.00	74.00	28.38	17.25	100	PASS	5	12.408	39.77	37.21	19.46	59.23	56.67	87.00	74.00	27.77	17.33	100	PASS	6	14.271	37.99	33.47	19.37	57.36	52.84	87.00	74.00	29.64	21.16	100	PASS
NO.	Frequency	QP Reading	Avg. Reading	Factor	QP Result	Avg. Result	QP Limit	Avg. Limit	QP Margin	Avg. Margin	Line	Remark																																																																																		
1	2.7915	33.47	31.08	19.46	52.93	50.54	87.00	74.00	34.07	23.46	100	PASS																																																																																		
2	4.0335	32.49	29.89	19.40	51.89	49.29	87.00	74.00	35.11	24.71	100	PASS																																																																																		
3	5.892	33.26	32.22	19.41	52.67	51.63	87.00	74.00	34.33	22.37	100	PASS																																																																																		
4	11.787	39.17	37.30	19.45	58.62	56.75	87.00	74.00	28.38	17.25	100	PASS																																																																																		
5	12.408	39.77	37.21	19.46	59.23	56.67	87.00	74.00	27.77	17.33	100	PASS																																																																																		
6	14.271	37.99	33.47	19.37	57.36	52.84	87.00	74.00	29.64	21.16	100	PASS																																																																																		
Note: 1. Result (dB μ V) = Reading (dB μ V) + Factor (dB). 2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).																																																																																														

Test Standard:	EN 55032	Line:	1000M									
Test Mode:	Mode 1	Test Power:	AC 230 V/50 Hz									
Description:												
Test Graph												
<p>The graph plots Level [dBμV] on the y-axis (ranging from -20 to 120) against Frequency [Hz] on the x-axis (logarithmic scale from 150k to 30M). A pink noise reference line is shown at 1000 Hz. The QP Limit (blue line) is constant at 80 dBμV. The AV Limit (green line) is constant at 70 dBμV. The PK (blue line) and AV (green line) detector data are shown as fluctuating lines. Magenta asterisks indicate QP detector data points, and green asterisks indicate AV detector data points. The graph shows that the test results (PK and AV) generally stay below the respective limits, with some spikes above the limits at higher frequencies.</p>												
Final Data List												
NO.	Frequency	QP Reading	AVG. Reading	Factor	QP Result	AVG. Result	QP Limit	AVG. Limit	QP Margin	AVG. Margin	Line	Remark
1	0.312	27.99	27.84	19.70	47.69	47.54	90.92	77.92	43.23	30.38	1000	PASS
2	1.5495	31.55	30.42	19.44	50.99	49.86	87.00	74.00	36.01	24.14	1000	PASS
3	3.4125	32.23	30.36	19.43	51.66	49.79	87.00	74.00	35.34	24.21	1000	PASS
4	5.892	32.26	29.93	19.41	51.67	49.34	87.00	74.00	35.33	24.66	1000	PASS
5	11.166	39.23	36.69	19.45	58.68	56.14	87.00	74.00	28.32	17.86	1000	PASS
6	12.4035	40.17	39.34	19.46	59.63	58.80	87.00	74.00	27.37	15.20	1000	PASS

Note: 1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

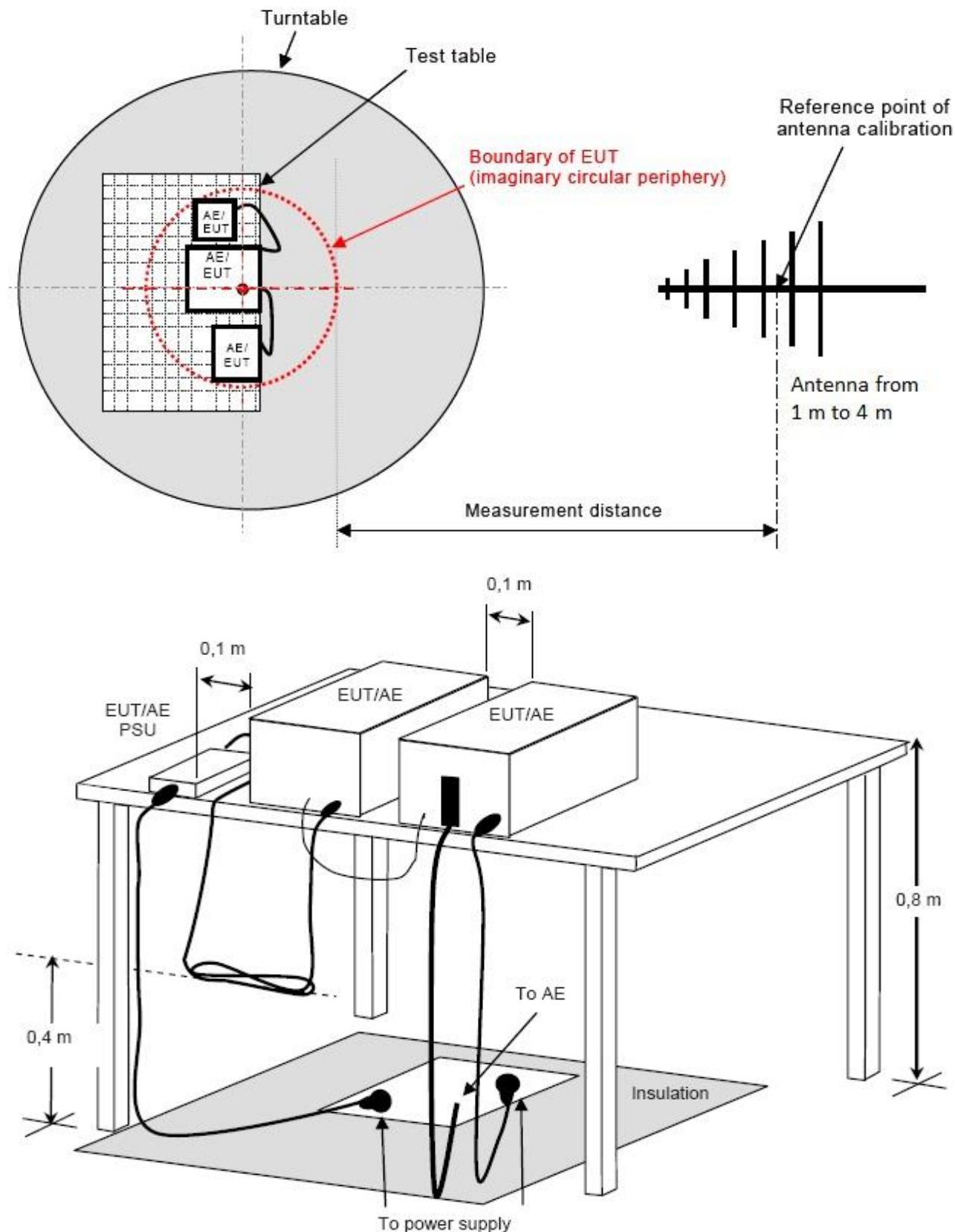
4.2. Radiated Emission

4.2.1 Limit

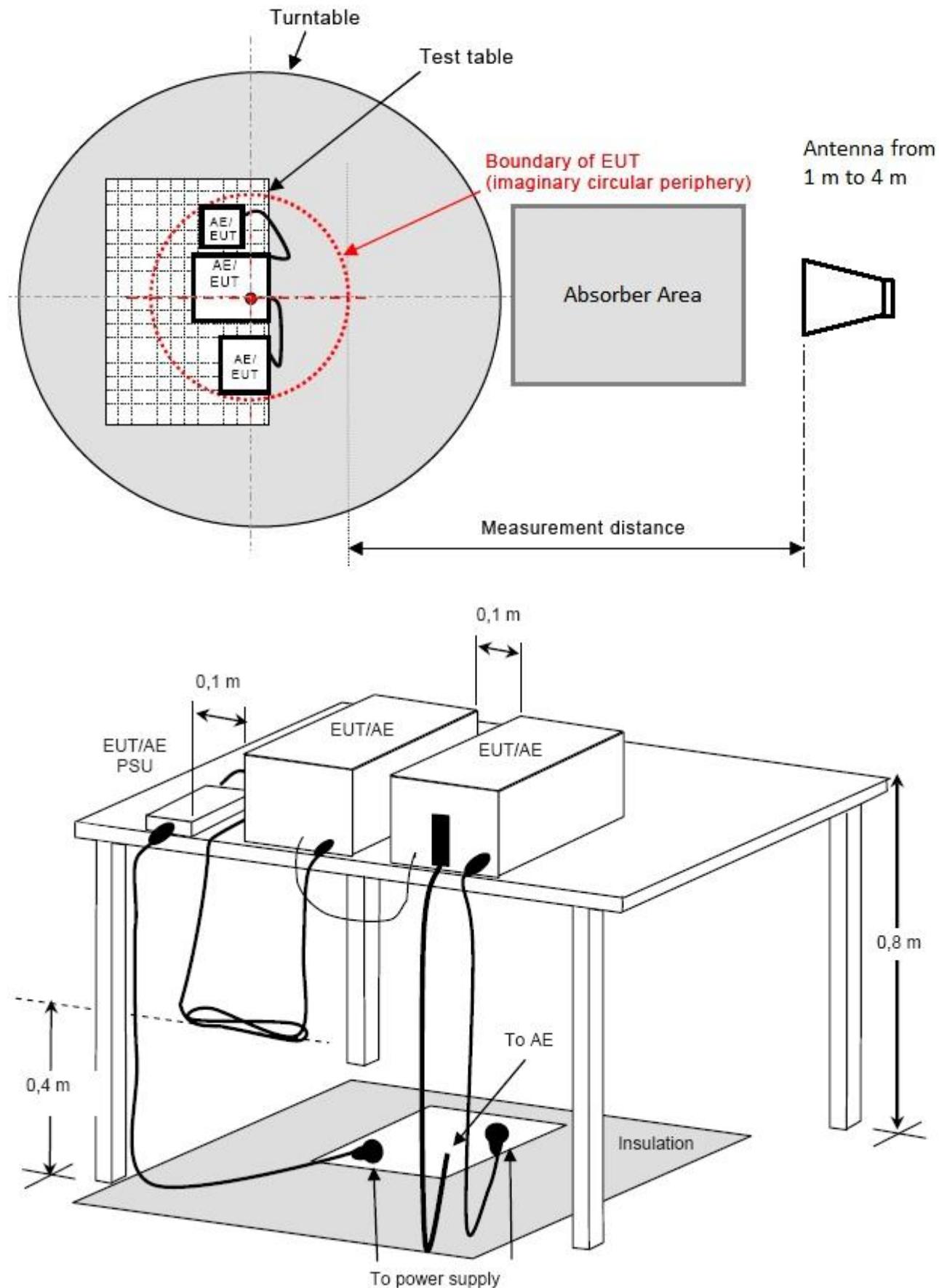
Frequency (MHz)	dBuV/m (Distance 3 m)	
	Class A	Class B
30 ~ 230	50	40
230 ~ 1000	57	47

Note: The lower limit shall apply at the transition frequencies.

Frequency (MHz)	dBuV/m (Distance 3 m)			
	Class A		Class B	
	Average	Peak	Average	Peak
1000 ~ 6000	60	80	54	74


Note: The lower limit shall apply at the transition frequencies.

According to EN55032 the measurement frequency range is shown in the following table:


Highest frequency generated or used within the EUT or on which the EUT operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Less than 108	1000
108-500	2000
500-1000	5000
Above 1000	5 times of the highest frequency or 6GHz, whichever is less

4.2.2 Test Configuration

■ Below 1GHz

■ Above 1GHz

4.2.3 Test Procedure

■ Procedure of Preliminary Test.

The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor ADAPTERing equipment, it is placed on the ground plane which has a less than 150 mm non-conductive covering to insulate the EUT from the ground plane.

Support equipment, if needed, was placed as per EN 55032.

All I/O cables were positioned to simulate typical usage as per EN 55032.

The EUT received AC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.

The antenna was placed at 3 or 10 meter away from the EUT as stated in EN 55032 Annex C.2.2.4 Figure C.1 and Annex D Table D.1. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Analyzer / Receiver quickly scanned from 30MHz to 6GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level (For Below 1GHz) and keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response (For Above 1GHz).

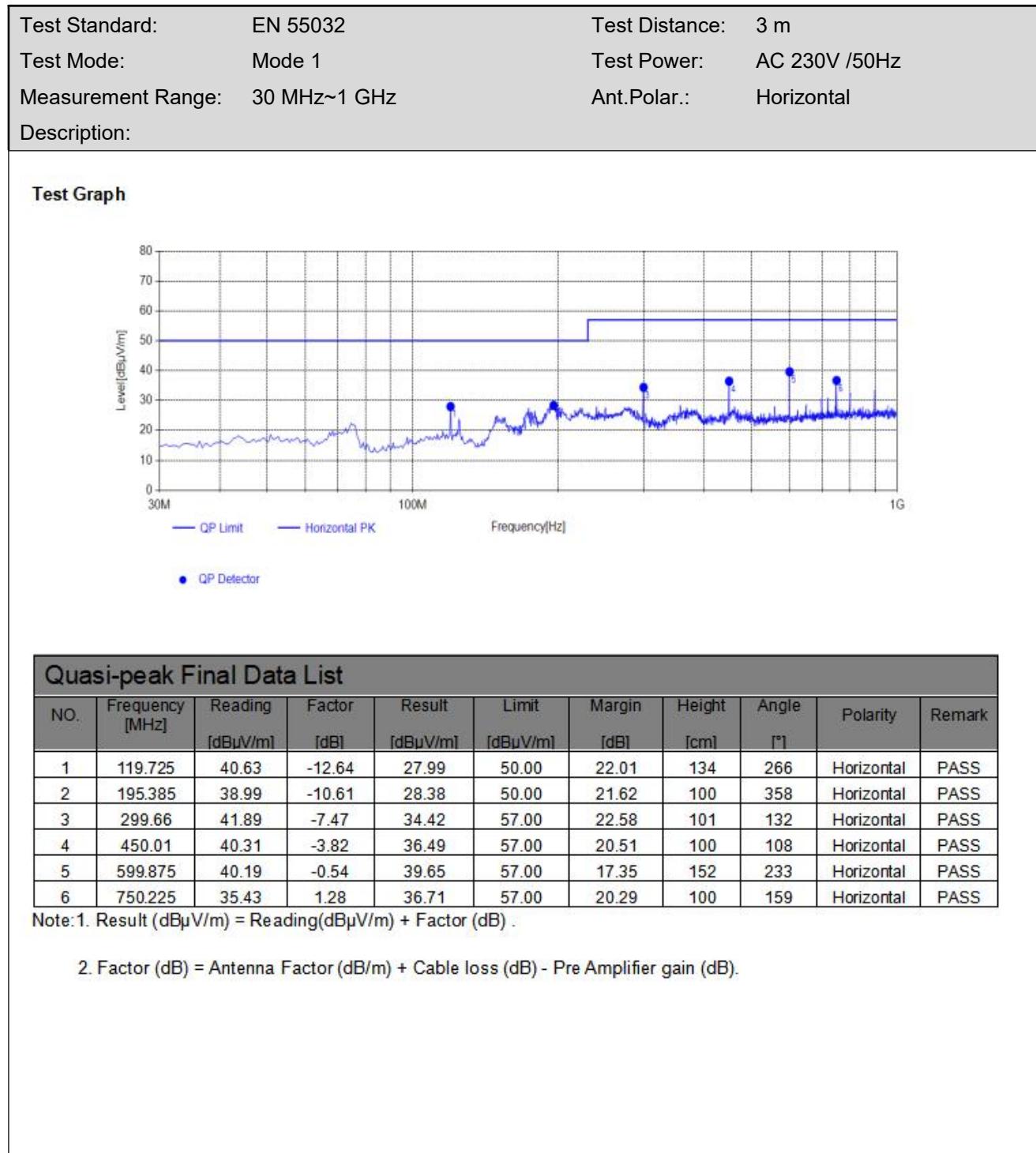
The test mode(s) described in Item 3.1 were scanned during the preliminary test:

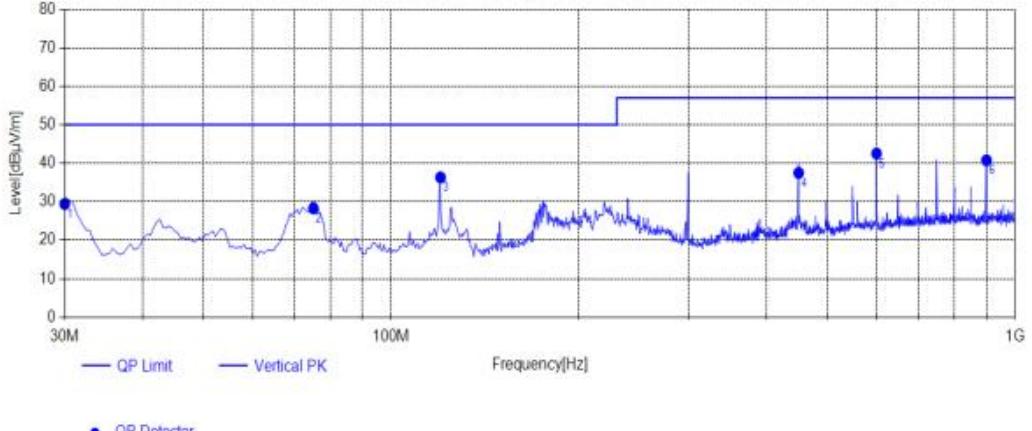
After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.

The worst configuration of EUT and cable, antenna position, polarization and turntable position of the above highest emission levels were recorded for the final test.

■ Procedure of Final Test

EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.

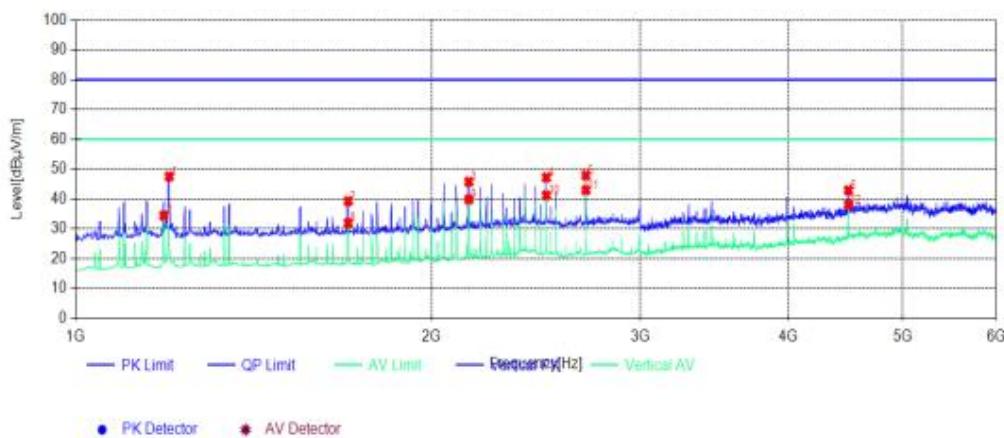

The Analyzer / Receiver scanned from 30MHz to 6000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.


Recording at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and Q.P. (For Below 1GHz) or Peak/Average (For Above 1GHz) reading is presented.

Cables connecting to AE located outside the measurement area shall drop directly to, but be insulated from, the RGP (or turntable where applicable), and then be routed directly to the place where they leave the test site. The thickness of the insulation shall not be more than 150 mm. However, cables which would normally be bonded to ground should be bonded to the RGP in accordance with normal practice or the manufacturer's recommendation

4.2.4 Test Results

Below 1GHz

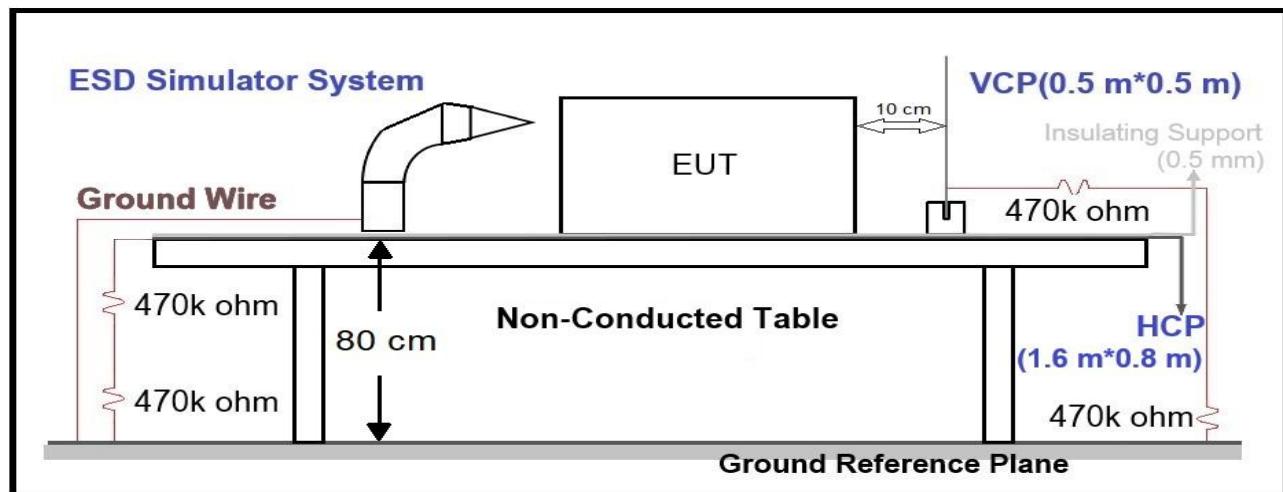

Test Standard:	EN 55032	Test Distance:	3 m							
Test Mode:	Mode 1	Test Power:	AC 230V /50Hz							
Measurement Range:	30 MHz~1 GHz	Ant.Polar.:	Vertical							
Description:										
Test Graph										
Quasi-peak Final Data List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	Remark
1	30	41.94	-12.50	29.44	50.00	20.56	107	61	Vertical	PASS
2	75.105	42.46	-14.18	28.28	50.00	21.72	102	118	Vertical	PASS
3	120.0363	48.97	-12.64	36.33	50.00	13.67	106	206	Vertical	PASS
4	450.01	41.31	-3.82	37.49	57.00	19.51	100	148	Vertical	PASS
5	599.875	43.08	-0.54	42.54	57.00	14.46	133	226	Vertical	PASS
6	900.09	38.62	2.16	40.78	57.00	16.22	100	172	Vertical	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Above 1GHz

Test Standard:	EN 55032	Test Distance:	3 m																																																																																																																																																												
Test Mode:	Mode 1	Test Power:	AC 230V /50Hz																																																																																																																																																												
Measurement Range:	1 GHz~6 GHz	Ant.Polar.:	Horizontal																																																																																																																																																												
Description:																																																																																																																																																															
Test Graph																																																																																																																																																															
Suspected List <table border="1"> <thead> <tr> <th>NO.</th><th>Frequency MHz</th><th>Reading</th><th>Factor</th><th>Result</th><th>Limit</th><th>Margin</th><th>Height</th><th>Angle</th><th>Detector</th><th>Polarity</th><th>Remark</th></tr> </thead> <tbody> <tr><td>1</td><td>1200</td><td>63.55</td><td>-17.91</td><td>45.64</td><td>80.00</td><td>34.36</td><td>100</td><td>253</td><td>PK</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>2</td><td>1348.75</td><td>66.50</td><td>-17.00</td><td>49.50</td><td>80.00</td><td>30.50</td><td>100</td><td>178</td><td>PK</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>3</td><td>1800</td><td>59.23</td><td>-14.84</td><td>44.39</td><td>80.00</td><td>35.61</td><td>100</td><td>206</td><td>PK</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>4</td><td>2250</td><td>61.52</td><td>-12.21</td><td>49.31</td><td>80.00</td><td>30.69</td><td>100</td><td>206</td><td>PK</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>5</td><td>2500</td><td>59.59</td><td>-10.77</td><td>48.82</td><td>80.00</td><td>31.18</td><td>100</td><td>105</td><td>PK</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>6</td><td>3400</td><td>48.48</td><td>-6.96</td><td>41.52</td><td>80.00</td><td>38.48</td><td>100</td><td>150</td><td>PK</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>7</td><td>1200</td><td>55.97</td><td>-17.91</td><td>38.06</td><td>60.00</td><td>21.94</td><td>100</td><td>224</td><td>AV</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>8</td><td>1350</td><td>60.29</td><td>-16.99</td><td>43.30</td><td>60.00</td><td>16.70</td><td>100</td><td>178</td><td>AV</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>9</td><td>1800</td><td>51.72</td><td>-14.84</td><td>36.88</td><td>60.00</td><td>23.12</td><td>100</td><td>126</td><td>AV</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>10</td><td>2200</td><td>55.77</td><td>-12.52</td><td>43.25</td><td>60.00</td><td>16.75</td><td>100</td><td>166</td><td>AV</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>11</td><td>2500</td><td>53.46</td><td>-10.77</td><td>42.69</td><td>60.00</td><td>17.31</td><td>100</td><td>105</td><td>AV</td><td>Horizontal</td><td>PASS</td></tr> <tr><td>12</td><td>3400</td><td>42.93</td><td>-6.96</td><td>35.97</td><td>60.00</td><td>24.03</td><td>100</td><td>150</td><td>AV</td><td>Horizontal</td><td>PASS</td></tr> </tbody> </table>				NO.	Frequency MHz	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark	1	1200	63.55	-17.91	45.64	80.00	34.36	100	253	PK	Horizontal	PASS	2	1348.75	66.50	-17.00	49.50	80.00	30.50	100	178	PK	Horizontal	PASS	3	1800	59.23	-14.84	44.39	80.00	35.61	100	206	PK	Horizontal	PASS	4	2250	61.52	-12.21	49.31	80.00	30.69	100	206	PK	Horizontal	PASS	5	2500	59.59	-10.77	48.82	80.00	31.18	100	105	PK	Horizontal	PASS	6	3400	48.48	-6.96	41.52	80.00	38.48	100	150	PK	Horizontal	PASS	7	1200	55.97	-17.91	38.06	60.00	21.94	100	224	AV	Horizontal	PASS	8	1350	60.29	-16.99	43.30	60.00	16.70	100	178	AV	Horizontal	PASS	9	1800	51.72	-14.84	36.88	60.00	23.12	100	126	AV	Horizontal	PASS	10	2200	55.77	-12.52	43.25	60.00	16.75	100	166	AV	Horizontal	PASS	11	2500	53.46	-10.77	42.69	60.00	17.31	100	105	AV	Horizontal	PASS	12	3400	42.93	-6.96	35.97	60.00	24.03	100	150	AV	Horizontal	PASS
NO.	Frequency MHz	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark																																																																																																																																																				
1	1200	63.55	-17.91	45.64	80.00	34.36	100	253	PK	Horizontal	PASS																																																																																																																																																				
2	1348.75	66.50	-17.00	49.50	80.00	30.50	100	178	PK	Horizontal	PASS																																																																																																																																																				
3	1800	59.23	-14.84	44.39	80.00	35.61	100	206	PK	Horizontal	PASS																																																																																																																																																				
4	2250	61.52	-12.21	49.31	80.00	30.69	100	206	PK	Horizontal	PASS																																																																																																																																																				
5	2500	59.59	-10.77	48.82	80.00	31.18	100	105	PK	Horizontal	PASS																																																																																																																																																				
6	3400	48.48	-6.96	41.52	80.00	38.48	100	150	PK	Horizontal	PASS																																																																																																																																																				
7	1200	55.97	-17.91	38.06	60.00	21.94	100	224	AV	Horizontal	PASS																																																																																																																																																				
8	1350	60.29	-16.99	43.30	60.00	16.70	100	178	AV	Horizontal	PASS																																																																																																																																																				
9	1800	51.72	-14.84	36.88	60.00	23.12	100	126	AV	Horizontal	PASS																																																																																																																																																				
10	2200	55.77	-12.52	43.25	60.00	16.75	100	166	AV	Horizontal	PASS																																																																																																																																																				
11	2500	53.46	-10.77	42.69	60.00	17.31	100	105	AV	Horizontal	PASS																																																																																																																																																				
12	3400	42.93	-6.96	35.97	60.00	24.03	100	150	AV	Horizontal	PASS																																																																																																																																																				
Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) . 2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).																																																																																																																																																															


Test Standard:	EN 55032	Test Distance:	3 m																																																																																																																																																												
Test Mode:	Mode 1	Test Power:	AC 230V /50Hz																																																																																																																																																												
Measurement Range:	1 GHz~6 GHz	Ant.Polar.:	Vertical																																																																																																																																																												
Description:																																																																																																																																																															
Test Graph																																																																																																																																																															
Suspected List <table border="1"> <thead> <tr> <th>NO.</th><th>Frequency MHz</th><th>Reading</th><th>Factor</th><th>Result</th><th>Limit</th><th>Margin</th><th>Height</th><th>Angle</th><th>Detector</th><th>Polarity</th><th>Remark</th></tr> </thead> <tbody> <tr><td>1</td><td>1200</td><td>65.45</td><td>-17.91</td><td>47.54</td><td>80.00</td><td>32.46</td><td>100</td><td>324</td><td>PK</td><td>Vertical</td><td>PASS</td></tr> <tr><td>2</td><td>1700</td><td>54.53</td><td>-15.29</td><td>39.24</td><td>80.00</td><td>40.76</td><td>100</td><td>155</td><td>PK</td><td>Vertical</td><td>PASS</td></tr> <tr><td>3</td><td>2150</td><td>58.55</td><td>-12.82</td><td>45.73</td><td>80.00</td><td>34.27</td><td>100</td><td>176</td><td>PK</td><td>Vertical</td><td>PASS</td></tr> <tr><td>4</td><td>2500</td><td>57.96</td><td>-10.77</td><td>47.19</td><td>80.00</td><td>32.81</td><td>100</td><td>176</td><td>PK</td><td>Vertical</td><td>PASS</td></tr> <tr><td>5</td><td>2700</td><td>57.75</td><td>-9.88</td><td>47.87</td><td>80.00</td><td>32.13</td><td>100</td><td>150</td><td>PK</td><td>Vertical</td><td>PASS</td></tr> <tr><td>6</td><td>4500</td><td>45.24</td><td>-2.39</td><td>42.85</td><td>80.00</td><td>37.15</td><td>100</td><td>138</td><td>PK</td><td>Vertical</td><td>PASS</td></tr> <tr><td>7</td><td>1187.5</td><td>52.38</td><td>-17.99</td><td>34.39</td><td>60.00</td><td>25.61</td><td>100</td><td>53</td><td>AV</td><td>Vertical</td><td>PASS</td></tr> <tr><td>8</td><td>1700</td><td>47.18</td><td>-15.29</td><td>31.89</td><td>60.00</td><td>28.11</td><td>100</td><td>155</td><td>AV</td><td>Vertical</td><td>PASS</td></tr> <tr><td>9</td><td>2150</td><td>52.63</td><td>-12.82</td><td>39.81</td><td>60.00</td><td>20.19</td><td>100</td><td>181</td><td>AV</td><td>Vertical</td><td>PASS</td></tr> <tr><td>10</td><td>2500</td><td>51.96</td><td>-10.77</td><td>41.19</td><td>60.00</td><td>18.81</td><td>100</td><td>176</td><td>AV</td><td>Vertical</td><td>PASS</td></tr> <tr><td>11</td><td>2700</td><td>52.82</td><td>-9.88</td><td>42.94</td><td>60.00</td><td>17.06</td><td>100</td><td>150</td><td>AV</td><td>Vertical</td><td>PASS</td></tr> <tr><td>12</td><td>4500</td><td>40.42</td><td>-2.39</td><td>38.03</td><td>60.00</td><td>21.97</td><td>100</td><td>138</td><td>AV</td><td>Vertical</td><td>PASS</td></tr> </tbody> </table>				NO.	Frequency MHz	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark	1	1200	65.45	-17.91	47.54	80.00	32.46	100	324	PK	Vertical	PASS	2	1700	54.53	-15.29	39.24	80.00	40.76	100	155	PK	Vertical	PASS	3	2150	58.55	-12.82	45.73	80.00	34.27	100	176	PK	Vertical	PASS	4	2500	57.96	-10.77	47.19	80.00	32.81	100	176	PK	Vertical	PASS	5	2700	57.75	-9.88	47.87	80.00	32.13	100	150	PK	Vertical	PASS	6	4500	45.24	-2.39	42.85	80.00	37.15	100	138	PK	Vertical	PASS	7	1187.5	52.38	-17.99	34.39	60.00	25.61	100	53	AV	Vertical	PASS	8	1700	47.18	-15.29	31.89	60.00	28.11	100	155	AV	Vertical	PASS	9	2150	52.63	-12.82	39.81	60.00	20.19	100	181	AV	Vertical	PASS	10	2500	51.96	-10.77	41.19	60.00	18.81	100	176	AV	Vertical	PASS	11	2700	52.82	-9.88	42.94	60.00	17.06	100	150	AV	Vertical	PASS	12	4500	40.42	-2.39	38.03	60.00	21.97	100	138	AV	Vertical	PASS
NO.	Frequency MHz	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark																																																																																																																																																				
1	1200	65.45	-17.91	47.54	80.00	32.46	100	324	PK	Vertical	PASS																																																																																																																																																				
2	1700	54.53	-15.29	39.24	80.00	40.76	100	155	PK	Vertical	PASS																																																																																																																																																				
3	2150	58.55	-12.82	45.73	80.00	34.27	100	176	PK	Vertical	PASS																																																																																																																																																				
4	2500	57.96	-10.77	47.19	80.00	32.81	100	176	PK	Vertical	PASS																																																																																																																																																				
5	2700	57.75	-9.88	47.87	80.00	32.13	100	150	PK	Vertical	PASS																																																																																																																																																				
6	4500	45.24	-2.39	42.85	80.00	37.15	100	138	PK	Vertical	PASS																																																																																																																																																				
7	1187.5	52.38	-17.99	34.39	60.00	25.61	100	53	AV	Vertical	PASS																																																																																																																																																				
8	1700	47.18	-15.29	31.89	60.00	28.11	100	155	AV	Vertical	PASS																																																																																																																																																				
9	2150	52.63	-12.82	39.81	60.00	20.19	100	181	AV	Vertical	PASS																																																																																																																																																				
10	2500	51.96	-10.77	41.19	60.00	18.81	100	176	AV	Vertical	PASS																																																																																																																																																				
11	2700	52.82	-9.88	42.94	60.00	17.06	100	150	AV	Vertical	PASS																																																																																																																																																				
12	4500	40.42	-2.39	38.03	60.00	21.97	100	138	AV	Vertical	PASS																																																																																																																																																				
Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB). 2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).																																																																																																																																																															

4.3. Electrostatic Discharge (ESD)

4.3.1 Test Specification

EN 61000-4-2			
Environmental Phenomena	Units	Test Specification	Performance Criterion
Enclosure Port			
Standard requirement Electrostatic Discharge	kV (Charge Voltage)	±8 Air Discharge ±4 Contact Discharge	B

4.3.2 Test Configuration

4.3.3 Test Procedure

The basic test procedure was in accordance with EN 61000-4-2:

IEC 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.6 by 0.8-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

Contact Discharge:

All the procedure shall be same as Section 8.3.1 of IEC 61000-4-2, except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

Indirect discharge for horizontal coupling plane

At least 50 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1 m from the EUT and with the discharge electrode touching the coupling plane.

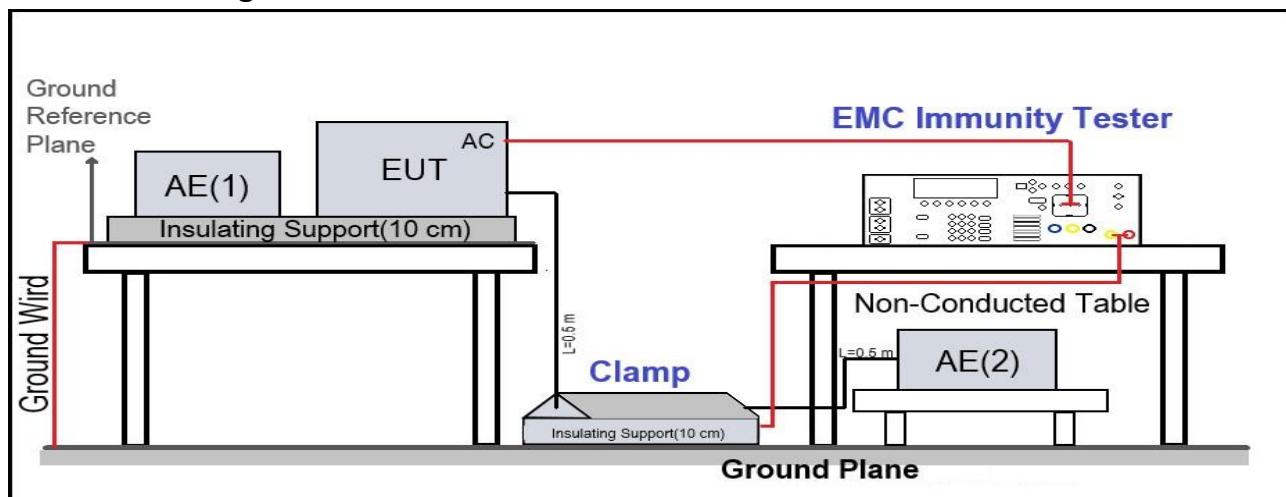
Indirect discharge for vertical coupling plane

At least 50 single discharges shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

4.3.4 Test Results

Test Mode: Mode 1													
Air Discharge													
Test Points	Test Levels						Verdict			Observation			
	± 2 kV	Performance Criterion	± 4 kV	Performance Criterion	± 8 kV	Performance Criterion	Pass	Fail					
Gaps	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input type="checkbox"/>	Note 1				
Port	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input type="checkbox"/>	Note 1				
Screen	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input type="checkbox"/>	Note 1				
Contact Discharge													
Test Points	Test Levels						Verdict			Observation			
	± 2 kV	Performance Criterion	± 4 kV	Performance Criterion	± 6 kV	Performance Criterion	Pass	Fail					
Metal shell	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	<input type="checkbox"/>	<input type="checkbox"/> A <input type="checkbox"/> B	<input checked="" type="checkbox"/>	<input type="checkbox"/>	Note 1				
Discharge To Horizontal Coupling Plane													
Side of EUT	Test Levels				Verdict								
	± 2 kV	± 4 kV	± 6 kV	± 8 kV	Pass	Fail	Performance Criterion	Observation					
Front	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	Note 1					
Back	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	Note 1					
Left	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	Note 1					
Right	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	Note 1					
Discharge To Vertical Coupling Plane													
Side of EUT	Test Levels				Verdict								
	± 2 kV	± 4 kV	± 6 kV	± 8 kV	Pass	Fail	Performance Criterion	Observation					
Front	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	Note 1					
Back	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	Note 1					
Left	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	Note 1					
Right	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	Note 1					

Note1: Criterion A: There was no change compared with initial operation during the test.


Note2: Criterion B: The performance decreased during the experiment, but it can recover by itself after the experiment.

4.4. Electrical Fast Transient/Burst (EFT)

4.4.1 Test Specification

EN 61000-4-4				
Item	Environmental Phenomena	Units	Test Specification	Performance Criterion
I/O and communication ports				
	Fast Transients Common Mode	kV (Peak) Tr/Th ns Rep. Frequency kHz	± 0.5 5/50 5	B
Input DC Power Ports				
	Fast Transients Common Mode	kV (Peak) Tr/Th ns Rep. Frequency kHz	± 0.5 5/50 5	B
Input AC Power Ports				
	Fast Transients Common Mode	kV (Peak) Tr/Th ns Rep. Frequency kHz	± 1 5/50 5	B

4.4.2 Test Configuration

4.4.3 Test Procedure

- Both positive and negative polarity discharges were applied.
- The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- The duration time of each test sequential was 1 minute.
- The transient/burst waveform was in accordance with EN 61000-4-4, 5/50ns.

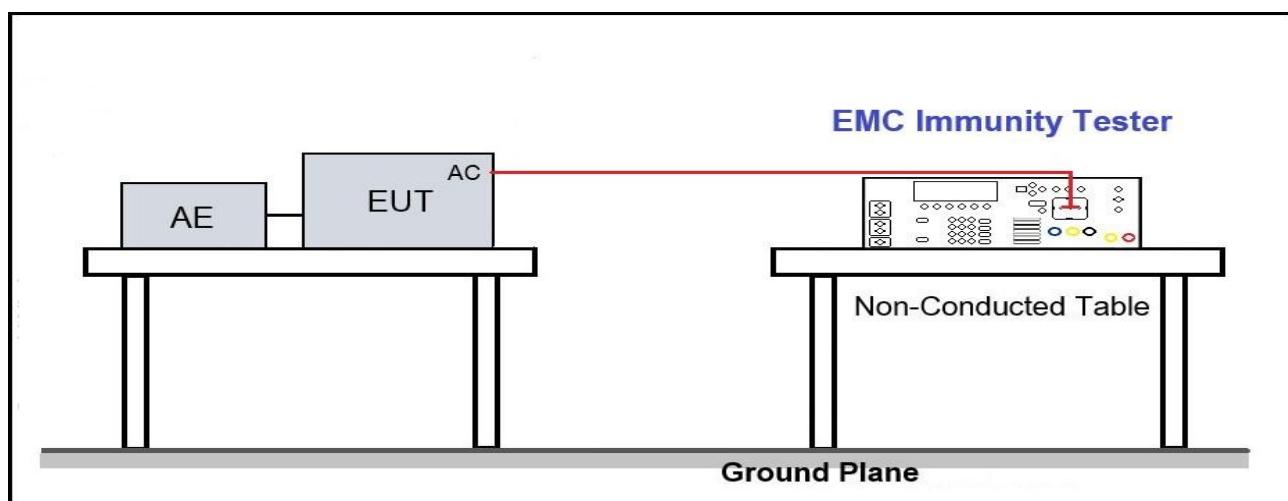
4.4.4 Test Results

Test Mode: Mode 1						
Test Point	Polarity	Test Level (kV)	Inject Time (Second)	Inject Method	Performance Criterion	Verdict
L	±	1	60	Direct	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	PASS
N	±	1	60	Direct	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	PASS
PE	±	1	60	Direct	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	PASS
L,N	±	1	60	Direct	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	PASS
L,PE	±	1	60	Direct	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	PASS
N,PE	±	1	60	Direct	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	PASS
L,N,PE	±	1	60	Direct	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	PASS
Signal Port	±	0.5	60	Coupling	<input checked="" type="checkbox"/> A <input type="checkbox"/> B	PASS

Note 1: The testing performed is from lowest level up to the highest level as required by Standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test


Criterion C: Loss/Error of function

4.5. Voltage Dips and Interruptions

4.5.1 Test Specification

EN 61000-4-11			
Environmental Phenomena	Units	Test Specification	Performance Criterion
Input AC Power Ports			
Voltage Dips	>95	% Reduction	B
	0.5	Period	
	30	% Reduction	C
	25	Period	
Voltage Interruptions	>95	% Reduction	C
	250	Period	

4.5.2 Test Configuration

4.5.3 Test Procedure

The Section of EN 61000-4 defines the immunity test methods and range of preferred test levels for electrical and electronic equipment connected to low-voltage power supply networks for voltage dips. Short interruptions and voltage variations. The Standard applies to electrical and electronic equipment having a rated input current not exceeding 16A per phase. It does not apply to electrical and electronic equipment for connection to D.C networks or 400Hz A.C networks. Test for these networks will be covered by future EN Standard. A performance criterion is classified as A, B, C, the recommendation is criterion A or B.

The test shall be performed with the EUT connected to the test generator with the shortest power supply cable as specified by EUT manufacturer. If no cable length is specified, it shall be the shortest possible length suitable to the application of the EUT.

The test set-up for the two types of phenomena described in this Standard are:

- Voltage dips and short interruptions;
- Voltage variations with gradual transition between the rated voltage and the changed voltage (Option)

Both tests may be implemented with this set-up. Test on the three-phase EUT are accomplished by using three set of equipment mutually synchronized.

The EUT shall be tested for each selected combination of test level and duration with a sequence of three Dip / interruption with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested.

4.5.4 Test Results

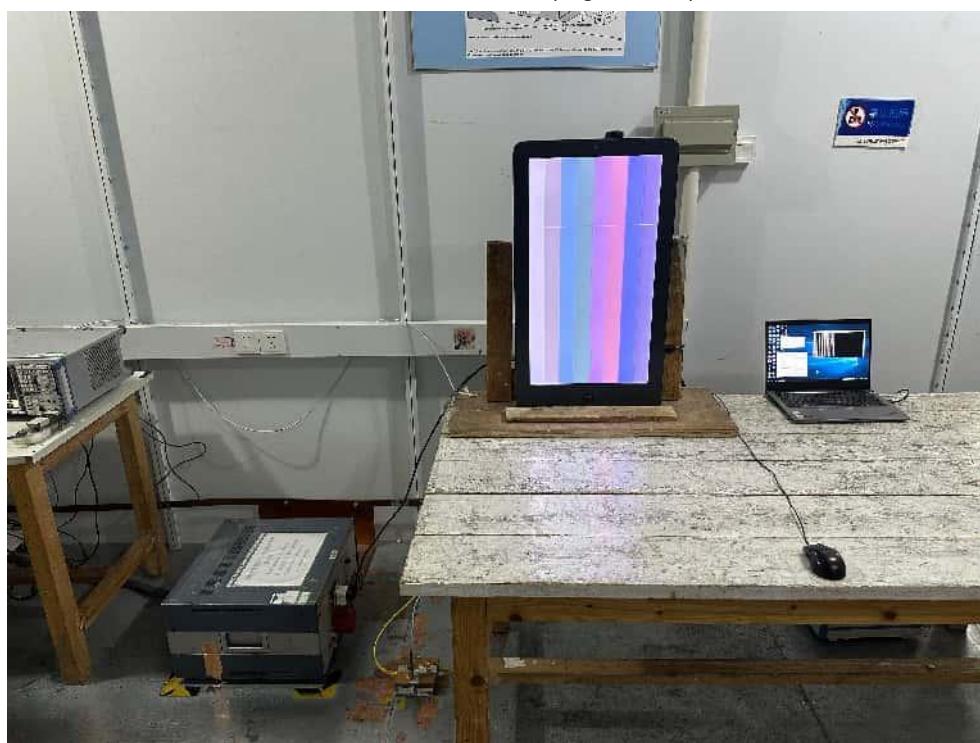
Test Mode:	Mode 1			
Angle:	0, 45, 90, 135, 180, 225, 270, 315			
Test Voltage (Vac) 230	Voltage Reduction (%)	Test Duration (Periods)	Performance Criterion	Verdict
	>95	0.5	<input type="checkbox"/> A <input checked="" type="checkbox"/> B <input type="checkbox"/> C	PASS
	30	25	<input type="checkbox"/> A <input type="checkbox"/> B <input checked="" type="checkbox"/> C	PASS
	>95	250	<input type="checkbox"/> A <input type="checkbox"/> B <input checked="" type="checkbox"/> C	PASS

Note 1: The testing performed is from lowest level up to the highest level as required by Standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test

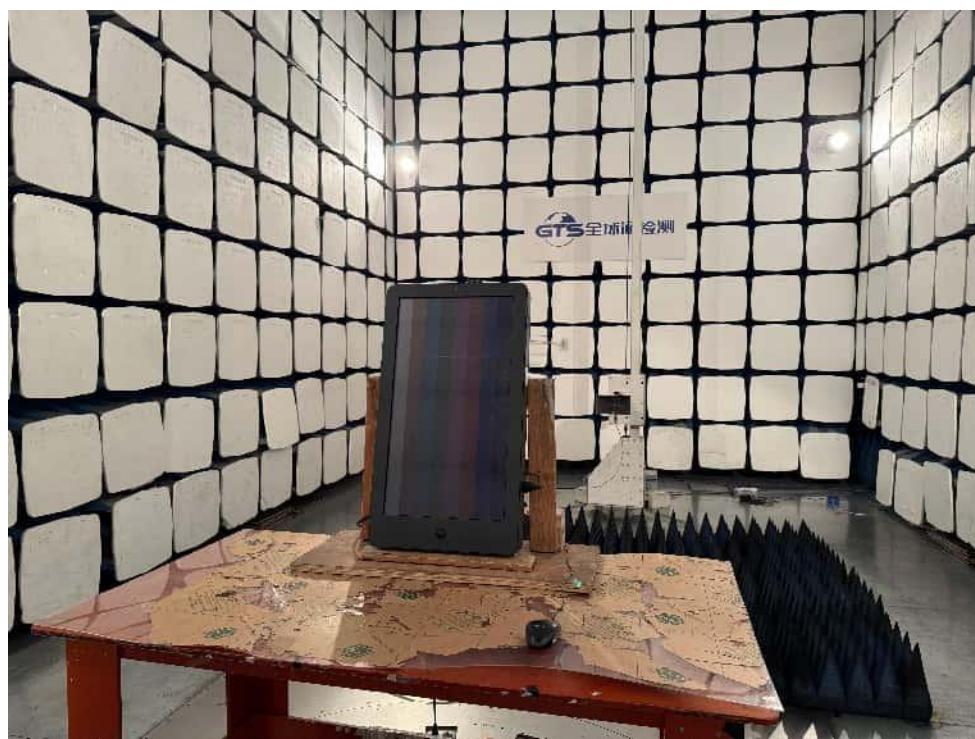
Criterion B: Operate as intended after the test

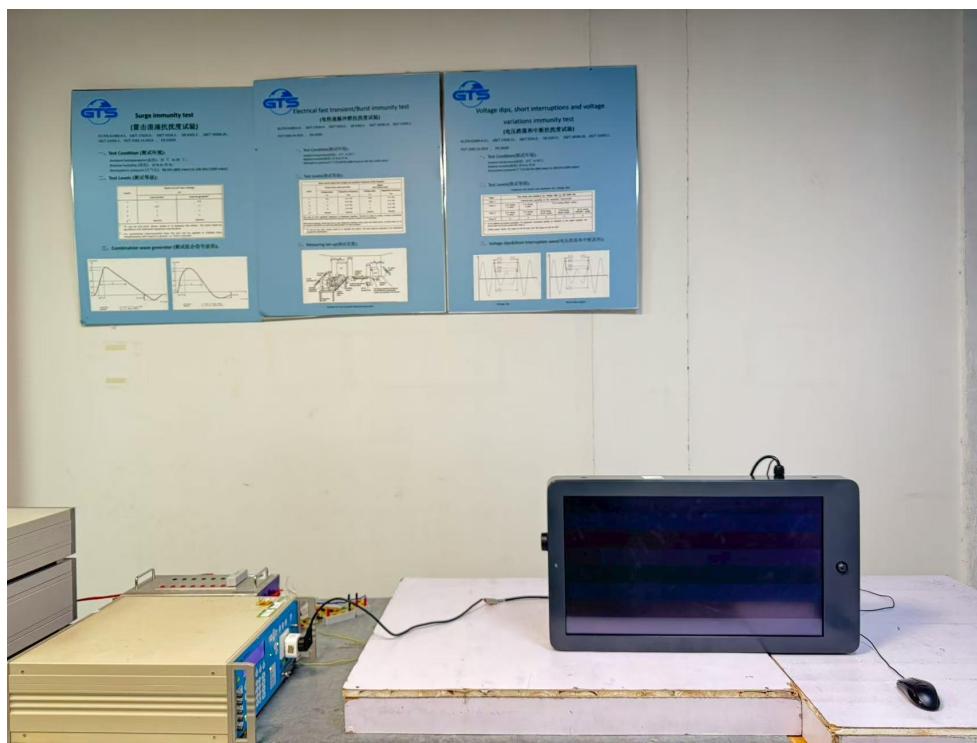
Criterion C: Loss/Error of function

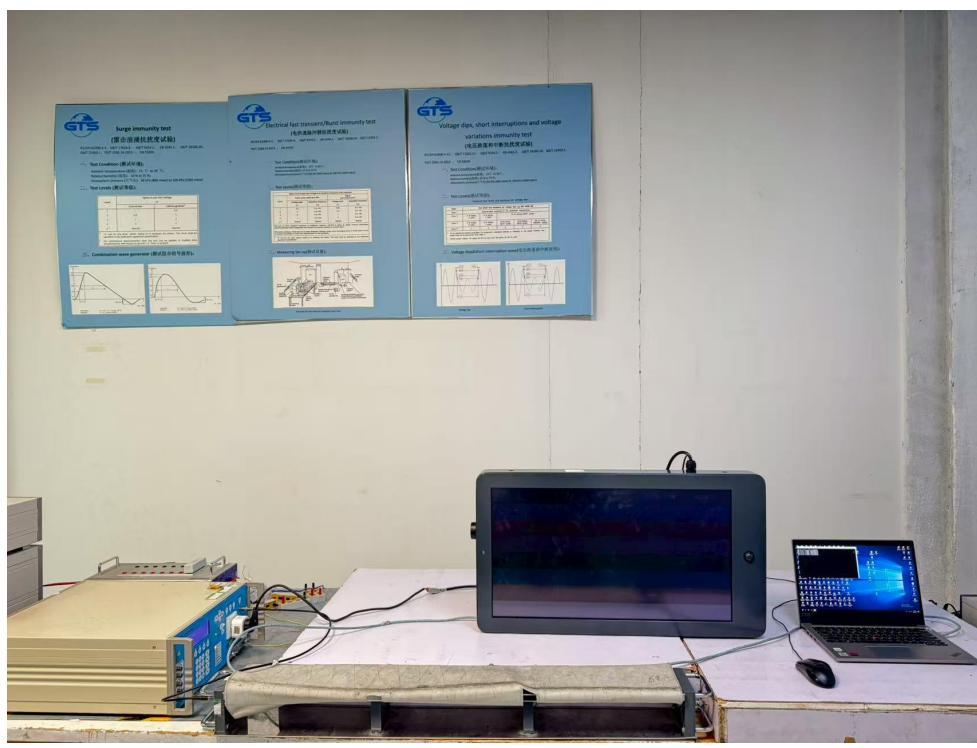

Note 2: The power is temporary off and can be reset by the operator.

5. TEST SETUP PHOTOS OF THE EUT

Conducted Emission (A.C. Mains)


Conducted Emission (Signal Port)


Radiated Emission Below 1GHz


Radiated Emission Above 1GHz

Electrical Fast Transient/Burst /Voltage Dips

Electrical Fast Transient/Burst (Signal Port)

Electrostatic Discharge

6. EXTERNAL PHOTOS OF THE EUT

.....End of Report.....